
Software Engineering

and Architecture

Reflections on

Mandatories

DOT & OLoA

• Two clean code principles often confuse

– Do One Thing: “But it does multiple things…”

– One Level of Abstraction: “Huh???”

• Do One Thing example

– Game’s method attackCard()

• “It does a lot, so it does not obey the ‘do one thing’ principle”

– Yes, it does…

• It does one thing: it executes a card attack

– As seen from the perspective of the “Game”

– [In my Clean Code slides, I am a bit ambiguous about that, sorry]

CS@AU Henrik Bærbak Christensen 2

DOT

• So ‘Do One Thing’ depends on the perspective and has

to be considered from the context

– attackCard is a single function/operation from the ‘user of game’

– But of course, internally (inside the method), it does quite a few

things

– These ‘things’ can again be grouped into ‘units of doing one

thing’

• Validate that an attack is possible; if so then do the attack

CS@AU Henrik Bærbak Christensen 3

OLoA

• One Level of Abstraction

– Tells us that these ‘next level things’ should also be grouped into

‘do one thing’ methods

– … and so on

CS@AU Henrik Bærbak Christensen 4

OLoA

• As in…

CS@AU Henrik Bærbak Christensen 5

It does not stop at level 1

• TAs report multiple examples of ‘stopping at level 1’

– Fine ‘next level of abstraction’

– But next level is just ‘all of it’

CS@AU Henrik Bærbak Christensen 6

Not more to do?

• One group argues this is the final, cleanest code?

CS@AU Henrik Bærbak Christensen 7

Compare with Mine?

CS@AU Henrik Bærbak Christensen 8

Zeta / State

• Mostly correct, but then…

• What is the issue

with the marked

code?

• Take care ☺

CS@AU Henrik Bærbak Christensen 9

Convoluted Code

• Sometimes (especially in a learning context!) we get

functional code that is overly complex, and lacks

analyzability. Try this:

CS@AU Henrik Bærbak Christensen 10

Convoluted Code

• Abstract class? Source-code-copy? Four classes?

– Think: “Aah, this can’t be right???” Do Over

CS@AU Henrik Bærbak Christensen 11

Subclassing

• … needed?

– Inheritance used

just to rename

a class?

CS@AU Henrik Bærbak Christensen 12

Not Quite as Convoluted

• State pattern just delegates to ConcreteState objects

– Store the two strategies, set the starting one

– Switch in case of

turn passing 12

– Return delegate’s

opinion on who

has won…

• Nothing else…

– Compositional

Design:

• Let someone else

do the job…

CS@AU Henrik Bærbak Christensen 13

Test Stub for Randomness

• Some subclass the Java library ‘Random’ class

– A Double is a replacement of a Depended-On Unit

CS@AU Henrik Bærbak Christensen 14

Code Stability

• Random contains many methods!

– But only one overridden…

– What if I rewrite my EpsilonStone

to use nextFloat() instead?

– Answer: Unexpected effects!

CS@AU Henrik Bærbak Christensen 15

Code Stability

• Morale: Let your Test Double define only the single

responsibility of ‘make a random index of who to effect on

the battle field of size n’

– High cohesion, low coupling

CS@AU Henrik Bærbak Christensen 16

