/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Reflections on
Mandatories

VeV DOT & OLoA

AARHUS UNIVERSITET
« Two clean code principles often confuse
— Do One Thing: “But it does multiple things...”

— One Level of Abstraction: “Huh???”

* Do One Thing example
— Game’s method attackCard()
» “It does a lot, so it does not obey the ‘do one thing’ principle”

— Yes, it does...

|t does one thing: it executes a card attack
— As seen from the perspective of the “Game”

— [In my Clean Code slides, | am a bit ambiguous about that, sorry]

VeV DOT

AARHUS UNIVERSITET

« So ‘Do One Thing' depends on the perspective and has
to be considered from the context

— attackCard is a single function/operation from the ‘user of game’

— But of course, internally (inside the method), it does quite a few
things

— These ‘things’ can again be grouped into ‘units of doing one
thing’

» Validate that an attack is possible; if so then do the attack

public Statws attackCard(Player playerAttacking, Card attackingCard, Card defendingCard) {
Status status = isAttackPossible(playerAttacking, attackingCard, defendingCard);

if (status != Status.0K) return status;

executeAttack(attackingCard, defendingCard);
return Status.0K;

cs@Au 3

VeV OLoA

AARHUS UNIVERSITET

* One Level of Abstraction

— Tells us that these ‘next level things’ should also be grouped into
‘do one thing’ methods

public Status attackCard(Player playerAttacking, Card attackingCard, Card defendingCard) {
Status status = isAttackPossible(playerAttacking, attackingCard, defendingCard);

if (status != Status.0K) return status;

executeAttack(attackingCard, defendingCard);

return Status.0K;

}

— ... and soon

CS@AU Henrik Baerbak Christensen 4

VeV OLoA

AARHUS UNIVERSITET
e Asin...

E0verride
public Statws attackCard(Player playerAttacking, Card attackingCard, Card defendingCard) {
Status status = isAttackPossible(playerAttacking, attackingCard, defendingCard);

if (status != Status.O0K) return status;

executeAttack(attackingCard, defendingCard);

return Status.0K;

private void executeAttack(Card attackingCard, Card defendingCard) {
reduceCardHealth(attackingCard, defendingCard.getAttack());
reduceCardHealth(defendingCard, attackingCard.getAttack());

removeCardIfDefeated(attackingCard);
removeCardIfDefeated(defendingCard);

deactivateCard(attackingCard);

CS@AU Henrik Baerbak Christensen 5

- It does not stop at level 1

AARHUS UNIVERSITET

« TAs report multiple examples of ‘stopping at level 1
— Fine ‘next level of abstraction’

public Status attackCard(Player playerAttacking, Card attackingCard, Card defendingCard) {
// Check if the attack is valid
Status attackStatus = checkIfAttackLegal(playerattacking, attackingCard, defendingCard);
if (attackStatus != Status.OK)
return attackStatus;

i

// Update card health and remove if dead
updateCardHealthAndRemove(playerattacking, attackingCard, defendingCard)};

]

/! Set card to inactive
setInactive(attackingCard);
return Status.0K;

— But next level is just ‘all of it’

private void updateCardHealthAndRemove(Player playeraAttacking, Card attackingCard, Card defendingCard)
// Find the cards attack strength
int attackStrength = attackingCard.getAttack();
int defendStrength = defendingCard.getAttack();
[/ Deduct attack strength from health
((StandardCard) attackingCard).loseHealth(defendStrength);
({StandardCard) defendingCard).loseHealth{attackStrength);
// If one of the cards has @ health or less, remove them from the battlefield
if (attackingCard.getHealth() <= @) battlefields.get(playerAttacking).remove(attackingCard);
if (defendingCard.getHealth() <= @)
C:E;«ig/\LJ battlefields.get(Player.computeOpponent (playerAttacking)).remove(defendingCard);

1
J

\ 4
AARHUS UNIVERSITET

Not more to do?

« One group argues this is the final, cleanest code?

CS@AU

public Status attackCard(Player playerAttacking, Card attackingCard, Card defendingCard) {
/{ type casting
StandardCard attCard = (StandardCard) attackingCard;
StandardCard defCard = (StandardCard) defendingCard;
//checking if attacking card is active
if(lattCard.isActive())
return Status.ATTACK _NOT_ALLOWED FOR_NON_ACTIVE MINION;}
else if(attCard.getOwner() == defCard.getOwner()){
return Status.ATTACK_NOT_ALLOWED ON_OWN_MINION;

1

J

else if(!{attCard.getOwner() == playerAttacking)){
return Status.NOT_OWNER;

}

else if (playerAttacking != playerInTurn) {
return Status.NOT_PLAYER_IN_TURN;

1
g

//attacking; reducing the minions' health
else {
attCard.reduceHealthBy (defCard.getAttack());
defCard.reduceHealthBy (attCard.getAttack());
if(attCard.getHealth() < 1) {
getField(playerAttacking).remove(attCard);
¥
if (defCard.getHealth() <« 1} {
getField(Player.computeOpponent (playerAttacking)).remove (defCard);

1
}

// now the attacking card is not active
attCard.setCardIsActive(false);

return Status.OK;

Henrik Baerbak Christensen

- Compare with Mine?

AARHUS UNIVERSITET

public Status attackCard(Player playerAttacking, Card attackingCard, Card defendingCard) {
// type casting
StandardCard attCard = (StandardCard) attackingCard;
standardCard defCard = (StandardCard) defendingCard;
//checking if attacking card is active
if(lattCard.isActive())}{
return Status.ATTACK_NOT_ALLOWED_FOR_NON_ACTIVE_MINION;}
else if(attCard.getOwner() == defCard.getOwner()){
return S5tatus. ATTACK _NOT_ALLOWED ON_OWN_MINION;

1
J

else if(!({attCard.getOwner() == playerAttacking)){
return Status.NOT_OWMNER; goverride

| public Status attackCard(Player playerAttacking, Card attackingCard, Card defendingCard) {

J Status status = isAttackPossible(playerAttacking, attackingCard, defendingCard);

else if (playeraAttacking != playerInTurn) { if (status != Status.OK) return status;
return 5tatus.NOT_PLAYER_IN_TURN;

1 executeAttack(attackingCard, defendingCard);
J

return Status.O0K;
//attacking; reducing the minions® health

+
else { i
attCard.reduceHealthBy (defCard.getAttack()
defCard.reduceHealthBy (attCard. getattack()
if{attCard.getHealth{) <« 1) {
getField(playeraAttacking).remove(attCard);
¥
if (defCard.getHealth() < 1) {
getField(Player.computeOpponent (playerAttacking)).remove(defCard);

H
Y
)

>

g

}

// now the attacking card is not active
attCard.setCardIsActive(false);

return Status.0K;

CS@AU Henrik Baerbak Christensen 8

A Zeta /| State

AARHUS UNIVERSITET
¢ Winner. The winner is the player that clears the opponent’s field after round 3
ot M OStI y CO rre Ct, b ut th e n .. (like GammaStone). However, in case the game lasts more than 6 rounds®. then

the winner is the player that first defeats the opponent’s hero (like BetaStone).

"public class alternateWinnerStrategy implements WinnerStrategy {
private Winnerstrategy currentStrategy:

° Wh t ' th ' private WinnerStrategy winnerStrategyPreRé;
a IS e Issue private WinnerStrategy winnerstrategyPostRe;
With the marked public alternateWinnerStrategy(WinnerStrategy winnerStrategyPreR6, WinnerStrategy winnerStrategyPostR6) {
this.currentStrategy = null;

this.winnerStrategyPreR6 = winnerStrategyPreR6;

COde ? this.winnerstrategyPostR6 = winnerstrategyPostRé:

}

@Qverride
public Player getWinner(StandardHotStoneGame game) {
int turnMumber = game.zetTurnNumber();
if (turnNumber < &) {
return null;

}

® Take Care @ T (LurnNumbper = 12) 1

this.currentStrategy = winnerStrategyPreRe;

}else {
this.currentStrategy = winnerStrategyPostR6;

}

return currentStrategy.getWwinner(game);

}
}

CS@AU Henrik Baerbak Christensen 9

b Convoluted Code

AARHUS UNIVERSITET

« Sometimes (especially in a learning context!) we get
functional code that is overly complex, and lacks
analyzability. Try this:

plic class

ZetaStoneWlnner
WinnerStrategy 0

StateStrategy impl 1ts WinnerStrategy {
e 3 ¢ = new ZetaStoneWinnerStateOne (this);

WinnerStrategy phase = new ZetaStoneWinnerStateTwo(this);

r lic class ZetaStoneWinnerStateOne extends ZetaStoneWinnerState {

etaStoneWinnerStateOne(ZetaStoneWinnerStateStrategy winnerStateStrategy) super(winnerStateStrategy);

getWinner(Ga - return =
getWinne ame game ety
. N =) c Player getWinner(Game game) {
F int round = game.getTurnNumber()/2+1;
0 an roundSixHasPassed = round=>6;
ublic class ZetaStoneWinnerStateTwo extends ZetaStoneWinnerState {
if(roundSixHasPassed) {
i eliinnerStateTwo(ZetaStoneWinnerStateStrategy winnerStateStrategy) super(winnerStateStrategy); winne S = eT trate B
ide E
Player getWinner(Game game) { }

if(game.getHero(Player (round>3)
f(round> 1
eturn Player

} if (game.getFieldSize(Player.FI) return Player.P

if(game.getHero(Pla INDUS) . getHealth()<=0){ if (game.getFieldSize(Player.PEDDERSEN) == 0) re n Player.FINDUS;
eturn Player H

.getHealth()<=0){

ZetaStoneWinnerState implements WinnerStrategy {
ZetaStoneWinnerStateStrategy winne -
one er e(ZetaStoneWinnerStateStrategy winnerStateStrategy) { winners

= winnerStateStrategy;

b Convoluted Code

AARHUS UNIVERSITET

« Abstract class? Source-code-copy? Four classes?
— Think: “Aah, this can’t be right???” Do Over

ZetaStoneWlnnerStateStra

tegy implements WinnerStrategy {

WinnerStrategy phaseOne gy = new ZetaStoneWinnerStateOne(this);
WinnerStrategy phaseTwoStrategy = new ZetaStoneWinnerStateTwo(this);
WinnerStrategy state = phaseOneStrategy;
2 . 'Y =i lic ss ZetaStoneWinnerStateOne extends ZetaStoneWinnerState {

ublic ZetaStoneWinnerStateOne(ZetaStoneWinnerStateStrategy winnerStateStrategy) uper(winnerStateStrategy);

getWinner (Game game) return

- 115} rl n . =
-getWinner(game); c Player getWinner(Game game) {

ound = game.getTurnNumber()/2+1;
an roundSixHasPassed = round>

ublic class ZetaStoneWinnerStateTwo extends ZetaStoneWinnerState {

eWilnnerState (ZetaStoneWinnerStateStrategy winnerStateStrategy) super(winnerStateStrategy);

@override
ublic Player getWinner(6ame game) {

i (game. getHero (Play if(round>3) {
etu Player Ak)

} if (game.getFieldSize(Player.

if(game.getHero(Pla INDUS) . getHealth()<=0){ if (game.getFieldSize(Player.
etu Player H

EN) .getHealtn()<=0){

ZetaStoneWinnerState implements WinnerStrategy {
ZetaStoneWinnerStateStrategy winners

]

te(ZetaStoneWinnerStateStrategy winnerStateStrategy) winners

= winnerStateStrategy;

A4
AARHUS UNIVERSITET

e ... needed?

— Inheritance used
just to rename
a class?

CS@AU

Subclassing

ZetaWinnerStrategy i WinnerStrategy {

ite ZetaWinnerState

Player Game game) {

if (game.getTurnNumber() < 6) {

new startZetaWinnerState();
(game.getTurnNumber() <
EarlyZetaWinnerState();

LateZetaWinnerState();

alculateWinner(game) ;

ce ZetaWinnerState {
Player

startZetaWinnerState im 1ts Z

Player ateWi Game g

GammaWinnerStrategy imp

Game game) return s

BetaWinnerStrategy i

Game game) return s

etaWinnerState{

alculateWinner (game) ;

5 ZetaWinnerState{

calculateWinner (game);

12

/v

Not Quite as Convoluted

AARHUS UNIVERSITET
« State pattern just delegates to ConcreteState objects

CS@AU

Store the two strategies, set the starting one

SW'tCh |n Case Of public class IZetaQﬁStcneWinnerStr‘ategy implements WinnerFindingStrategy {
. private final WinnerFinding5trategy betaWinner; 2 usages
tU rn paSSIng 12 private final WinnerFindingStrategy gammaWinner; 2 usages
J . . L
Return delegate S private WinnerFindingStrategy state; 2 usages
. . public Zeta24StoneWinnerStrategy() { 1usage Henrik Beerbak @ coffeelake.s
Oplnlon On Who betaWinner = new WinnerIsTheBaneOfOpponent();
haS Won gammaWinner = new WinnerIsRushToClearFieldAfterRound3();
. state = gammaWinner;
* Nothing else... }
Compositional roak @ coffesiake
= . public Player computeWinner(Game game) {
Des'gn' if (game.getTurnNumber() == 12)
o L t I state = betaWinner;
e Someone e se return state.computeWinner(game);
do the job... '
Henrik Baerbak Christensen 13

/v Test Stub for Randomness

AARHUS UNIVERSITET

« Some subclass the Java library ‘Random’ class
— A Double is a replacement of a Depended-On Unit

jort java.util.Random;

public class FixedRandomNumbersStub extends Random o

private int fixedValue;

this.fixedValue = fixedValue;

public int nextInt(int bound)

CS@AU Henrik Baerbak Christensen 14

/v

AARHUS UNIVERSITET

 Random contains many methods!
— But only one overridden...

.util.Random;

mbersStub extends Random {

ub(int fixedValue) { this.fixedvalue = fixedValue;

nextInt(int bound) eturn fixedValue;

— What if | rewrite my EpsilonStone
to use nextFloat() instead?

— Answer: Unexpected effects!

Definition: Stability (ISO 9126)

The capability of the software product to avoid unexpected effects from
modifications of the system.

CS@AU Henrik Baerbak Christensen

Code Stability

next(int bits)

nextBoolean ()

= 5
mown o
S 5 e
NN

long N
long B
longs (long streamsize
long 0
il B

randomNumbe ror
randomNumbe rBo

nextBytes (byte[] bytes)

nextDouble()

nextFloat()

nextGaussian ()

nextInt()

nextInt(int bound)

nextLong()

setSeed(long seed)

15

/v Code Stability

AARHUS UNIVERSITET

* Morale: Let your Test Double define only the single
responsibility of ‘make a random index of who to effect on
the battle field of size n’

— High cohesion, low coupling

public interface RandomMNumberStrategy {

int computeRandomMumber(int N);

I

